Course outline

Introduction to IBM SPSS Modeler Text Analytics (v18.1.1)

Categories: Guaranteed To Run™, IBM

GK IBM LS Partner

Duration: 2 Days

This course (formerly: Introduction to IBM SPSS Text Analytics for IBM SPSS Modeler (v18)) teaches you how to analyze text data using IBM SPSS Modeler Text Analytics. You will be introduced to the complete set of steps involved in working with text data, from reading the text data to creating the final categories for additional analysis. After the final model has been created, there is an example of how to apply the model to perform churn analysis in telecommunications. Topics include how to automatically and manually create and modify categories, how to edit synonym, type, and exclude dictionaries, and how to perform Text Link Analysis and Cluster Analysis with text data. Also included are examples of how to create resource tempates and Text Analysis packages to share with other projects and other users.

Please refer to course overview

• General computer literacy
• Prior completion of Introduction to IBM SPSS Modeler and Data Science (v18.1.1) is recommended.

Users of IBM SPSS Modeler responsible for building predictive models who want to leverage the full potential of classification models in IBM SPSS Modeler.

Unit 1 - Introduction to text mining
• Describe text mining and its relationship to data mining
• Explain CRISP-DM methodology as it applies to text mining
• Describe the steps in a text mining project

Unit 2 - An overview of text mining
• Describe the nodes that were specifically developed for text mining
• Complete a typical text mining modeling session

Unit 3 - Reading text data
• Reading text from multiple files
• Reading text from Web Feeds
• Viewing text from documents within Modeler

Unit 4 - Linguistic analysis and text mining
• Describe linguistic analysis
• Describe Templates and Libraries
• Describe the process of text extraction
• Describe Text Analysis Packages
• Describe categorization of terms and concepts

Unit 5 - Creating a text mining concept model
• Develop a text mining concept model
• Score model data
• Compare models based on using different Resource Templates
• Merge the  results with a file containing the customer’s demographics
• Analyze model results

Unit 6 - Reviewing types and concepts in the Interactive Workbench
• Use the Interactive Workbench
• Update the modeling node
• Review extracted concepts

Unit 7 - Editing linguistic resources
• Describe the resource template
• Review dictionaries
• Review libraries
• Manage libraries

Unit 8 - Fine tuning resources
• Review Advanced Resources
• Extracting non-linguistic entities
• Adding fuzzy grouping exceptions
• Forcing a word to take a particular Part of Speech
• Adding non-Linguistic entities

Unit 9 - Performing Text Link Analysis
• Use Text Link Analysis interactively
• Create categories from a pattern
• Use the visualization pane
• Create text link rules
• Use the Text Link Analysis node

Unit 10 - Clustering concepts
• Create Clusters
• Creating categories from cluster concepts
• Fine tuning Cluster Analysis settings

Unit 11 - Categorization techniques
• Describe approaches to categorization
• Use Frequency Based Categorization
• Use Text Analysis Packages to Categorize data
• Import pre-existing categories from a Microsoft Excel file
• Use Automated Categorization with Linguistic-based Techniques

Unit 12 - Creating categories
• Develop categorization strategy
• Fine turning the categories
• Importing pre-existing categories
• Creating a Text Analysis Package
• Assess category overlap
• Using a Text Analysis Package to categorize a new set of data
• Using Linguistic Categorization techniques to Creating Categories

Unit 13 - Managing Linguistic Resources
• Use the Template Editor
• Share Libraries
• Save resource templates
• Share Templates
• Describe local and public libraries
• Backup Resources
• Publishing libraries

Unit 14 - Using text mining models
• Explore text mining models
• Develop a model with quantitative and qualitative data
• Score new data

Appendix A - The process of text mining
• Explain the steps that are involved in performing a text mining project

This course is delivered by an authorized IBM Global Training Provider.

Feel free to contact us, if you want to know the price and location of this course. A Digital Revolver representative will contact you shortly to help you with your inquiry.
Please fill out the form below

  • Guaranteed to Run™. This ensures you will attend the instructor led class or live online class you want as scheduled without any disruptive cancellations*. You book the training you need, get back to focusing on your job and are sure your training requirements will be met saving time, money and ensuring peace of mind.
  • This schedule icon the schedule indicates that this date/time will be conducted as Instructor Led Training (ILT) or a Virtual Instructor Led Training (VILT) depending on the indicated class availablity.
Privacy and Cookies

This website stores cookies on your computer which help us make the website work better for you.

Learn moreAccept and Close
Social media & sharing icons powered by UltimatelySocial