Course outline

Introduction to IBM SPSS Modeler and Data Science (v18.1.1)

Categories: Guaranteed To Run™, IBM

GK IBM LS Partner

Duration: 2 Days

This course provides the fundamentals of using IBM SPSS Modeler and introduces the participant to data science. The principles and practice of data science are illustrated using the CRISP-DM methodology. The course provides training in the basics of how to import, explore, and prepare data with IBM SPSS Modeler v18.1.1, and introduces the student to modeling.

Please refer to course overview

• It is recommended that you have an understanding of your business data

• Business analysts
• Data scientists
• Clients who are new to IBM SPSS Modeler or want to find out more about using it

1. Introduction to data science
• List two applications of data science
• Explain the stages in the CRISP-DM methodology
• Describe the skills needed for data science
2. Introduction to IBM SPSS Modeler
• Describe IBM SPSS Modeler's user-interface
• Work with nodes and streams
• Generate nodes from output
• Use SuperNodes
• Execute streams
• Open and save streams
• Use Help
3. Introduction to data science using IBM SPSS Modeler
• Explain the basic framework of a data-science project
• Build a model
• Deploy a model
4. Collecting initial data
• Explain the concepts "data structure", "of analysis", "field storage" and "field measurement level"
• Import Microsoft Excel files
• Import IBM SPSS Statistics files
• Import text files
• Import from databases
• Export data to various formats
5. Understanding the data
• Audit the data
• Check for invalid values
• Take action for invalid values
• Define blanks
6. Setting the of analysis
• Remove duplicate records
• Aggregate records
• Expand a categorical field into a series of flag fields
• Transpose data
7. Integrating data
• Append records from multiple datasets
• Merge fields from multiple datasets
• Sample records
8. Deriving and reclassifying fields
• Use the Control Language for Expression Manipulation (CLEM)
• Derive new fields
• Reclassify field values
9. Identifying relationships
• Examine the relationship between two categorical fields
• Examine the relationship between a categorical field and a continuous field
• Examine the relationship between two continuous fields
10. Introduction to modeling
• List three types of models
• Use a supervised model
• Use a segmentation model

This course is delivered by an authorized IBM Global Training Provider.

Feel free to contact us, if you want to know the price and location of this course. A Digital Revolver representative will contact you shortly to help you with your inquiry.
Please fill out the form below

  • Guaranteed to Run™. This ensures you will attend the instructor led class or live online class you want as scheduled without any disruptive cancellations*. You book the training you need, get back to focusing on your job and are sure your training requirements will be met saving time, money and ensuring peace of mind.
  • This schedule icon the schedule indicates that this date/time will be conducted as Instructor Led Training (ILT) or a Virtual Instructor Led Training (VILT) depending on the indicated class availablity.
Privacy and Cookies

This website stores cookies on your computer which help us make the website work better for you.

Learn moreAccept and Close
Social media & sharing icons powered by UltimatelySocial